The Hilbert Schmidt version of the commutator theorem for zero trace matrices

نویسندگان

  • Omer Angel
  • Gideon Schechtman
چکیده

Let A be a m × m complex matrix with zero trace. Then there are m ×m matrices B and C such that A = [B,C] and ‖B‖‖C‖2 ≤ (logm + O(1))‖A‖2 where ‖D‖ is the norm of D as an operator on `2 and ‖D‖2 is the Hilbert–Schmidt norm of D. Moreover, the matrix B can be taken to be normal. Conversely there is a zero trace m × m matrix A such that whenever A = [B,C], ‖B‖‖C‖2 ≥ | logm−O(1)|‖A‖2 for some absolute constant c > 0.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A quantitative version of the commutator theorem for zero trace matrices

Let A be a m ×m complex matrix with zero trace and let ε > 0. Then there are m ×m matrices B and C such that A = [B, C] and ‖B‖‖C‖ ≤ Kεm‖A‖ where Kε depends only on ε. Moreover, the matrix B can be taken to be normal.

متن کامل

A note on the Young type inequalities

In this   paper,  we   present  some  refinements  of the   famous Young  type  inequality.   As  application  of   our   result, we  obtain  some  matrix inequalities   for   the  Hilbert-Schmidt norm  and   the  trace   norm. The results    obtained   in  this  paper  can  be   viewed   as  refinement  of  the   derived  results   by  H.  Kai  [Young  type  inequalities  for matrices,  J.  Ea...

متن کامل

On a functional equation for symmetric linear operators on $C^{*}$ algebras

‎Let $A$ be a $C^{*}$ algebra‎, ‎$T‎: ‎Arightarrow A$ be a linear map which satisfies the functional equation $T(x)T(y)=T^{2}(xy),;;T(x^{*})=T(x)^{*} $‎. ‎We prove that under each of the following conditions‎, ‎$T$ must be the trivial map $T(x)=lambda x$ for some $lambda in mathbb{R}$: ‎‎ ‎i) $A$ is a simple $C^{*}$-algebra‎. ‎ii) $A$ is unital with trivial center and has a faithful trace such ...

متن کامل

A strong convergence theorem for solutions of zero point problems and fixed point problems

Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated‎. ‎A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces‎.

متن کامل

G-frames and Hilbert-Schmidt operators

In this paper we introduce and study Besselian $g$-frames. We show that the kernel of associated synthesis operator for a Besselian $g$-frame is finite dimensional. We also introduce $alpha$-dual of a $g$-frame and we get some results when we use the Hilbert-Schmidt norm for the members of a $g$-frame in a finite dimensional Hilbert space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015